A light-sensitive mechanism differently regulates transcription and transcript stability of omega3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean photosynthetic cell suspensions.

نویسندگان

  • Raquel Collados
  • Vanesa Andreu
  • Rafael Picorel
  • Miguel Alfonso
چکیده

The omega3 fatty-acid desaturases: FAD7 and FAD8 (plastid) and FAD3 (reticular) are responsible for trienoic fatty-acid (TA) production in plants. The expression of these enzymes seemed to be regulated differently in response to light. Darkness leads to a decrease in total TA level. Under such conditions, FAD3 and FAD8 transcript levels were undetectable but increased after re-illumination concomitant with TA levels, indicating a transcriptional control. On the contrary, FAD7 transcript levels were similar to illuminated control cells, suggesting the presence of a post-transcriptional control mechanism. Furthermore, FAD7 mRNA stability increased dramatically in darkness. Analysis of FAD7 protein accumulation using specific antibodies revealed that FAD7 was very stable whatever the light or darkness conditions. These results indicate that FAD7 enzyme availability is not limiting for 18:3 production in darkness. Our data point to an additional post-translational regulatory mechanism that controls the activity of FAD7 in response to light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids

The photosynthetic thylakoid has the highest level of lipid unsaturation of any membrane. In Arabidopsis thaliana plants grown at 22°C, approximately 70% of the thylakoid fatty acids are trienoic - they have three double bonds. In Arabidopsis, and other species, the levels of trienoic fatty acids decline substantially at higher temperatures. Several genetic studies indicate that reduced unsatur...

متن کامل

Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling.

Stearoyl-acyl carrier protein desaturase-mediated conversion of stearic acid to oleic acid (18:1) is the key step that regulates the levels of unsaturated fatty acids (FAs) in cells. Our previous work with the Arabidopsis (Arabidopsis thaliana) ssi2/fab2 mutant and its suppressors demonstrated that a balance between glycerol-3-phosphate (G3P) and 18:1 levels is critical for the regulation of sa...

متن کامل

The GmFAD7 gene family from soybean: identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity

The FAD7 gene encodes a omega3 fatty acid desaturase which catalyses the production of trienoic fatty acids (TAs) in plant chloroplasts. A novel GmFAD7 gene (named GmFAD7-2) has been identified in soybean, with high homology to the previously annotated GmFAD7 gene. Genomic sequencing analysis together with searches at the soybean genome database further confirmed that both GmFAD7 genes were loc...

متن کامل

Saccharomyces kluyveri FAD3 encodes an v3 fatty acid desaturase

Received 22 January 2004 Revised 26 February 2004 Accepted 27 February 2004 Fungi, like plants, are capable of producing the 18-carbon polyunsaturated fatty acids linoleic acid and a-linolenic acid. These fatty acids are synthesized by catalytic reactions of D12 and v3 fatty acid desaturases. This paper describes the first cloning and functional characterization of a yeast v3 fatty acid desatur...

متن کامل

A temporal regulatory mechanism controls the different contribution of endoplasmic reticulum and plastidial ω-3 desaturases to trienoic fatty acid content during leaf development in soybean (Glycine max cv Volania).

We analyzed the molecular mechanism controlling ω-3 fatty acid desaturases during seed germination and leaf development in soybean. During germination, soybean seeds were characterized by a high 18:2(Δ9,12) level (more than 50%) and reduced 18:3(Δ9,12,15) content (10%). Interestingly, transcripts from all endoplasmic reticulum (GmFAD3A and GmFAD3B) and plastidial (GmFAD7-1/GmFAD7-2 or GmFAD8-1/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEBS letters

دوره 580 20  شماره 

صفحات  -

تاریخ انتشار 2006